A heterobivalent ligand inhibits mast cell degranulation via selective inhibition of allergen-IgE interactions in vivo.

نویسندگان

  • Michael W Handlogten
  • Ana P Serezani
  • Anthony L Sinn
  • Karen E Pollok
  • Mark H Kaplan
  • Basar Bilgicer
چکیده

Current treatments for allergies include epinephrine and antihistamines, which treat the symptoms after an allergic response has taken place; steroids, which result in local and systemic immune suppression; and IgE-depleting therapies, which can be used only for a narrow range of clinical IgE titers. The limitations of current treatments motivated the design of a heterobivalent inhibitor (HBI) of IgE-mediated allergic responses that selectively inhibits allergen-IgE interactions, thereby preventing IgE clustering and mast cell degranulation. The HBI was designed to simultaneously target the allergen binding site and the adjacent conserved nucleotide binding site (NBS) found on the Fab of IgE Abs. The bivalent targeting was accomplished by linking a hapten to an NBS ligand with an ethylene glycol linker. The hapten moiety of HBI enables selective targeting of a specific IgE, whereas the NBS ligand enhances avidity for the IgE. Simultaneous bivalent binding to both sites provided HBI with 120-fold enhancement in avidity for the target IgE compared with the monovalent hapten. The increased avidity for IgE made HBI a potent inhibitor of mast cell degranulation in the rat basophilic leukemia mast cell model, in the passive cutaneous anaphylaxis mouse model of allergy, and in mice sensitized to the model allergen. In addition, HBI did not have any observable systemic toxic effects even at elevated doses. Taken together, these results establish the HBI design as a broadly applicable platform with therapeutic potential for the targeted and selective inhibition of IgE-mediated allergic responses, including food, environmental, and drug allergies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulatory T cells enhance mast cell production of IL-6 via surface-bound TGF-β.

Mast cell degranulation is a hallmark of allergic reactions, but mast cells can also produce many cytokines that modulate immunity. Recently, CD25(+) regulatory T cells (Tregs) have been shown to inhibit mast cell degranulation and anaphylaxis, but their influence on cytokine production remained unknown. In this study, we show that, rather than inhibit, Tregs actually enhance mast cell producti...

متن کامل

Interleukin-33 amplifies IgE synthesis and triggers mast cell degranulation via interleukin-4 in naïve mice1

BACKGROUND The regulation and function of IgE in healthy individuals and in antigen-naïve animals is not well understood. IL-33 administration increases serum IgE in mice with unknown mechanism. We tested the hypothesis that IL-33 provides an antigen-independent stimulus for IgE production and mast cell degranulation. METHODS IL-33 was administered to naïve wild-type (WT), nude and ST2(-/-) ,...

متن کامل

Inhibition of spleen tyrosine kinase prevents mast cell activation and airway hyperresponsiveness.

RATIONALE Spleen tyrosine kinase (Syk) is important for Fc and B-cell receptor-mediated signaling. OBJECTIVE To determine the activity of a specific Syk inhibitor (R406) on mast cell activation in vitro and on the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation in vivo. METHODS AHR and inflammation were induced after 10 d of allergen (ovalbumin [OVA]) expos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 192 5  شماره 

صفحات  -

تاریخ انتشار 2014